Math, asked by topper0002, 3 months ago

EVALUATE :-

(2a-5b) (2a + 5b) (4a² +25b²)

________________

⚠️ Don't Spam ⚠️

Otherwise 10 Ans will be reported :)

Answers

Answered by SujalBendre
6

GIVEN :-

  • (2a - 5b) (2a + 5b) (4a² + 25b²)

TO FIND :-

  • The value of (2a - 5b) (2a + 5b) (4a² + 25b²).

SOLUTION :-

Firstly , Let's divide the equation into two parts,

⇒ [(2a - 5b) (2a + 5b)] [(4a² + 25b²)]

Now by using identity (a + b)(a - b) = a² - b².

⇒ [ (2a)² - (5b)² ] [ 4a² + 25b² ]

⇒ (4a² - 25b²)(4a² + 25b²)

Now by using identity (a + b)(a - b) = a² - b².

⇒ (4a²)² - (25b²)²

⇒ 16a⁴ - 625b⁴

⇒ (2a - 5b) (2a + 5b) (4a² + 25b²) = 16a⁴ - 625b⁴.

Hence the value of (2a - 5b) (2a + 5b) (4a² + 25b²) is 16a⁴ - 625b⁴.

I hope it's helps you then please mark me as Brainlist so I can get next Rank Genius and Thanks to my Answer.

Verified Answer .

Answered by XxRedmanherexX
3

(2a - 5b)(2a + 5b)(4 {a}^{2}  + 25b {}^{2} ) \\ \\  (x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \\  \\ (2a - 5b)(2a + 5b) =  {(2a)}^{2}  -  {(5b) }^{2}  \\  = 4 {a}^{2}  - 25 {b}^{2}  \\  \\ (2a - 5b)(2a + 5b)(4 {a}^{2}  + 25b {}^{2} )  \\   \\  = (4 {a}^{2}  - 25 {b}^{2} )(4 {a}^{2}  + 25 {b}^{2} ) \\  \\  = 16 {a}^{4}  - 625 {b}^{4}

Similar questions