evaluate :[2sinx+3cosx/7sinx-2cosx]dx
Answers
Answered by
0
Step-by-step explanation:
We have I=∫
3cosx+2sinx
3sinx+2cosx
dx
Let 3sinx+2cosx=λ(3cosx+2sinx)+μ
dx
d
(3cosx+2sinx)
3sinx+2cosx=λ(3cosx+2sinx)+μ(−3sinx+2cosx)
Comparing the coefficients of sinx and cosx on both sides,we get
−3μ+2λ=3and2μ+3λ=2
λ=
13
12
andμ=−
13
5
therefore I=∫
3cosx+2sinx
λ(3cosx+2sinx)+μ(−3sinx+2cosx)
dx
=λ∫1dx+μ∫
3cosx+2sinx
−3sinx+2cosx
dx
Put t=3cosx+2sinx
⇒dt=−3sinx+2cosx
=λx+μ∫
t
dt
=λx+μlog∣t∣+C
=
13
12
x+
13
−5
log∣3cosx+2sinx∣+C
Similar questions