Math, asked by nerkarchanchal149, 4 months ago

evaluate 2x-1 dx from 0 to 4​

Answers

Answered by pulakmath007
14

\displaystyle \sf \int\limits_{0}^{4} (2x - 1) \, dx = 12

Given :

\displaystyle \sf \int\limits_{0}^{4} (2x - 1) \, dx

To find :

Integrate the integral

Solution :

Step 1 of 2 :

Write down the given Integral

The given Integral is

\displaystyle \sf \int\limits_{0}^{4} (2x - 1) \, dx

Step 2 of 2 :

Integrate the integral

\displaystyle \sf \int\limits_{0}^{4} (2x - 1) \, dx

\displaystyle \sf  = \bigg[ 2. \frac{ {x}^{2} }{2}  - x \bigg]_{0}^{4}

\displaystyle \sf  = \bigg[  {x}^{2}   - x \bigg]_{0}^{4}

\displaystyle \sf  = \bigg[  {4}^{2}   - 4 \bigg] - \bigg[  {0}^{2}   - 0 \bigg]

\displaystyle \sf  = \bigg[  16   - 4 \bigg] - \bigg[  0   - 0 \bigg]

\displaystyle \sf  = 12

Correct question : Integrate 2x-1 dx from 0 to 4

Similar questions