Math, asked by soumya122, 1 year ago

evaluate 2x⁴+5x³+7x²-x+41 when x=-2-√3i

Answers

Answered by Anonymous
120
hope this helps you☺️
Attachments:
Answered by pinquancaro
45

Answer:

2x^4+5x^3+7x^2-x+41=6 when x=-2-\sqrt3 i.

Step-by-step explanation:

Given : x=-2-\sqrt3 i

To find : Evaluate 2x^4+5x^3+7x^2-x+41

Solution :

x=-2-\sqrt3 i=-(2+\sqrt3 i) ....(1)

Squaring both side,

x^2=(-(2+\sqrt3 i))^2

x^2=4+3i^2+4\sqrt3 i

x^2=4-3+4\sqrt3 i

x^2=1+4\sqrt3 i .....(2)

Multiply (1) and (2),

x\times x^2=(-(2+\sqrt3 i))(1+4\sqrt3 i)

x^3=-(2+8\sqrt3 i+\sqrt3 i+12i^2)

x^3=-(2+9\sqrt3 i-12)

x^3=-(-10+9\sqrt3 i)

x^3=10-9\sqrt3 i .....(3)

Squaring (2) both side,

(x^2)^2=(1+4\sqrt3 i)^2

x^4=1+48i^2+8\sqrt3 i

x^4=1-48+8\sqrt3 i

x^4=-47+8\sqrt3 i .....(4)

Substitute (1),(2),(3) and (4) in the expression,

=2(-47+8\sqrt3 i)+5(10-9\sqrt3 i)+7(1+4\sqrt3 i)-(-2-\sqrt3 i)+41

=-94+16\sqrt3 i+50-45\sqrt3 i+7+28\sqrt3 i+2+\sqrt3 i+41

=6+0\sqrt3 i

=6

Therefore, 2x^4+5x^3+7x^2-x+41=6 when x=-2-\sqrt3 i.

Similar questions