Math, asked by kakkar6644, 1 year ago

Evaluate : ³√1372× ³√1458


kakkar6644: Rishijain123 plz. Answer

Answers

Answered by Reshma18
105
First we have to find the cube root of 1372 and 1458 by the prime factorisation method. Then we will get;
 
 ∛1372 =  ∛2×2×7×7×7 (after factorizing)
    i.e; ∛1372 = 7√4

∛1458 = ∛2×3×3×3×3×3×3
∛1458 =  3×3√2 = 9√2

so ∛1372 × ∛1458 = 7√4 × 9√2 = 63√8 (we can simplify √8 = 2√2)
                                               So the final answer = 63×2√2
                                                                              =  126√2
 
Hope this is right................... 

 



kakkar6644: I got it.
Reshma18: glad it helped..............
Answered by mindfulmaisel
67

"\sqrt[3]{1372} \times \sqrt[3]{1458}=126 \sqrt{2}

Given:

\sqrt[3]{1372} \times \sqrt[3]{1458}

Solution:

First we should find the cube root of 1372 and 1458 by the prime factorisation method:

\sqrt[3]{1372}=2 \times 2 \times 7 \times 7 \times 7 (After factorizing)

\Rightarrow \sqrt[3]{1372}=7 \sqrt{4}

\sqrt[3]{1458}=2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 (After factorizing)

\sqrt[3]{1458}=\sqrt{2} \times 3 \times 3=9 \sqrt{2}

So,

\sqrt[3]{1372} \times \sqrt[3]{1458}=7 \sqrt{4} \times 9 \sqrt{2}=63 \sqrt{8}(\because \sqrt{8}=2 \sqrt{2})

=63 \times 2 \sqrt{2}

\sqrt[3]{1372} \times \sqrt[3]{1458}=126 \sqrt{2}"

Similar questions