Math, asked by laeeqhajeera, 2 months ago

evaluate : 3^-2 × [(5/4)^-1 - (10/3)^-1] pls answer it in a notebook pls​

Attachments:

Answers

Answered by soumyadip2035
1

Answer:

the \:  \: answer \:  \: is \:  \:  -  \frac{1}{18}

Answered by BrainlySparrow
213

Answer:

1/18 Ans..

Step-by-step explanation:

 \huge\sf\blue{Question:} \:

 \displaystyle{ \implies \:  {3}^{ - 2} \times \: (( \frac{5}{4}) {}^{ - 1} - ( \frac{10}{3}  ) {}^{ - 1} )}

 \huge\sf\blue{Solution:} \:

As we know that,

 \displaystyle{ \sf{ {a}^{ - n} =  \frac{1}{ {a}^{n} }  }}

So,

 \displaystyle{ \implies {3}^{ - 2}  \times ( \frac{4}{5} -  \frac{10}{3}   )}

  \sf\displaystyle{ \implies \:  \frac{1}{3 \times 3} \times ( \frac{8 - 3}{10}  }) \:  \:  \: (LCM \:  = 10)

 \displaystyle{ \implies \:  \frac{1}{9}  \times  \cancel \frac{5}{10} }

 \displaystyle{ \implies \:  \frac{1}{9} \times  \frac{1}{2}  }

  \sf\displaystyle{ \implies \:  \frac{1}{18}  \:  \: ans...}

 \huge\sf\blue{More \:  Information :}

\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}} \:

Note:

Picture is also attached.

Attachments:
Similar questions