Math, asked by tanmay1114, 6 months ago

Evaluate (3/2)⁶×(3/2)⁴​

Answers

Answered by Asterinn
3

 \implies{ (\dfrac{3}{2})}^{6}  \times { (\dfrac{3}{2})}^{4}

We know that :

 \underline{ \boxed{ \bf  {(a)}^{b} \times  {(a)}^{c}  =  {(a)}^{b + c}  }}

Therefore :-

\implies{ (\dfrac{3}{2})}^{6}  \times { (\dfrac{3}{2})}^{4}  = \bf {(\dfrac{3}{2})}^{6 + 4}

\implies{ (\dfrac{3}{2})}^{6}  \times { (\dfrac{3}{2})}^{4}  = {(\dfrac{3}{2})}^{10}

We know that :-

\underline{ \boxed{   \bf ({\dfrac{a}{b}  ) }^{c}  =  \dfrac{ {(a)}^{c} }{ {(b)}^{c} } }}

\implies  \sf  {\dfrac{ {(3)}^{10} }{ {(2)}^{10} }}

Answer:

 \sf {\dfrac{ {(3)}^{10} }{ {(2)}^{10} }} \:  or \: {(\dfrac{3}{2})}^{10}

_______________________

 \underline {\bf \red {learn \: more   } } :

1)a^m \times a^n= {a}^{(m + n)}

2) {( {a}^{m})}^{n}   =  {a}^{mn}

3) {ab}^{n}  =  {a}^{n}  {b}^{n}

4) \frac{ {(a)}^{m} }{ {(a)}^{n} } = {a}^{m - n}

5) {a}^{ - b}  =  \frac{1}{ {a}^{b} }

Similar questions