Math, asked by samirskotak12, 4 months ago

evaluate 3^-5×10^-5÷3^-4×10^-3​

Answers

Answered by vijaykumar142008
1

Step-by-step explanation:

This is required solution.

Attachments:
Answered by MrImpeccable
15

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Evaluate:

  • 3^-5×10^-5÷3^-4×10^-3

Solution:

:\longrightarrow \dfrac{3^{-5} * 10^{-5}}{3^{-4} * 10^{-3}} \\\\:\implies 3^{(-5)-(-4)} * 10^{(-5)-(-3)} \\\\:\implies 3^{-5+4} * 10^{-5+3} \\\\\bf{:\implies 3^{-1} * 10^{-2}} \\\\:\implies \dfrac{1}{3*100} \\\\\bf{:\implies \dfrac{1}{300}} \\

Formula Used:

  • a^m ÷ a^n = a^(m-n)

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions