Math, asked by mefri, 1 month ago

evaluate(3-⁵×10-⁵×5³)÷(5-⁷×6-⁵×5⁵)​

Answers

Answered by GraceS
6

\sf\huge\bold{Answer:}

Given :

⇒( {3}^{ - 5}  \times  {10}^{ - 5}  \times  {5}^{3} ) \div ( {5}^{ - 7} \times  {5}^{5}  )

Solution :

⇒( {3}^{ - 5}  \times  {10}^{ - 5}  \times  {5}^{3} ) \div ( {5}^{ - 7} \times  {5}^{5}  )

we know that,

⇒a \div b = a \times  \frac{1}{b} =  \frac{a}{b}

similarly,using the above identity in the term,

we get

=( {3}^{ - 5}  \times  {10}^{ - 5}  \times  {5}^{3} )  \times  \frac{1}{( {5}^{ - 7} \times  {5}^{5}  )}   \\  =  \frac{( {3}^{ - 5}  \times  {10}^{ - 5}  \times  {5}^{3} )}{ {5}^{ - 7} \times  {5}^{5}  }

now,using identities

 ⇒{a}^{m}  \times  {b}^{m}  =  {(ab)}^{m}  \\ ⇒ {a}^{m} \times  {a}^{n} =  {a}^{m + n}  \\   ⇒ {a}^{m}  \div  {a}^{n}  =  {a}^{m - n}

 =  \frac{ {(3 \times 10) }^{ - 5} \times  {5}^{3}  }{ {5}^{ - 7 + 5} }  \\

Now,we also know that

⇒ {a}^{ m} =   \frac{1}{ {a}^{ - m} }  \: or \: vice \: -  versa

so,using this in the given term,

we get

 =  \frac{ {30}^{ - 5} }{ {5}^{ - 2}  \times  {5}^{ - 3} }  \\  =  \frac{ {30}^{ - 5} }{ {5}^{ - 2 - 3} }  \\  =  \frac{ {30}^{ - 5} }{ {5}^{ - 5} }

so,in the above identities the reciprocal of those identities is also true

⇒ {ab}^{m}  =  {a}^{m}  \times  {b}^{m}

Using this,we get

( {6 \times 5)}^{ - 5} on \: splitting \:  {30}^{ - 5}

 =  \frac{ {6}^{ - 5} \times  {5}^{ - 5}  }{ {5}^{ - 5} }  \\  =  {6}^{ - 5}  \: or \:  \frac{1}{ {6}^{5} }

so,the final solution after step by step explanation of ⇒( {3}^{ - 5}  \times  {10}^{ - 5}  \times  {5}^{3} ) \div ( {5}^{ - 7} \times  {5}^{5}  ) is {6}^{-5}

Similar questions