Math, asked by khushikriplani01, 6 months ago

Evaluate 3 x 31/2 x 31/4 x 31/8 x ... to infinity​

Answers

Answered by pulakmath007
10

SOLUTION

TO DETERMINE

 \displaystyle \sf{3 \times  {3}^{  \frac{1}{2}  } \times  {3}^{ \frac{1}{4} }  \times  {3}^{ \frac{1}{8} } \times .. \: infinity }

FORMULA TO BE IMPLEMENTED

If in a Geometric Progression with first a and common ratio = r ( < 1 ) then sum of infinite number of terms

 \displaystyle \sf{ =  \frac{a}{1 - r} }

EVALUATION

 \displaystyle \sf{3 \times  {3}^{  \frac{1}{2}  } \times  {3}^{ \frac{1}{4} }  \times  {3}^{ \frac{1}{8} } \times .. \: infinity }

 \displaystyle \sf{ =  {3}^{1}  \times  {3}^{  \frac{1}{2}  } \times  {3}^{ \frac{1}{4} }  \times  {3}^{ \frac{1}{8} } \times .. \: infinity }

 \displaystyle \sf{ =  {3}^{1 +  \frac{1}{2} +  \frac{1}{4}  +  \frac{1}{8}  + .. \: infinity } }

 \displaystyle \sf{ =  {3}^{ \frac{1}{1 -  \frac{1}{2} }  } }

 \displaystyle \sf{ =  {3}^{ \frac{1}{  \frac{1}{2} }  } }

 \displaystyle \sf{ =  {3}^{2} }

 = 9

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve the recarency relation ar-7ar-1+10ar-2=2r,a0=0,and a1=6

https://brainly.in/question/2163198

2. Solve the recurrence relation s(k)-10s(k-1)+9s(k-2)=0 with n

s(0)=3,s(1)=11.

https://brainly.in/question/23772288

Similar questions