Math, asked by sakshitong, 1 year ago

evaluate (343/1331)1/3​

Answers

Answered by hukam0685
68

Answer:

\bigg({ \frac{343}{1331} } \bigg)^{ \frac{1}{3} } =  \frac{7}{11}  \\   \\

Step-by-step explanation:

To evaluate

  \bigg({ \frac{343}{1331} } \bigg)^{ \frac{1}{3} }  \\  \\

In such cases always try to convert the terms in the power of 3

here we know that

 \bigg({ \frac{343}{1331} } \bigg)^{ \frac{1}{3} } = \bigg({ \frac{7 \times 7 \times 7}{11 \times 11 \times 11} } \bigg)^{ \frac{1}{3} }   \\  \\  = \bigg({ \frac{ {(7)}^{3} }{ {(11)}^{3} } } \bigg)^{ \frac{1}{3} } \\  \\  =  \frac{ {(7)}^{3 \times  \frac{1}{3} } }{( {11)}^{3 \times  \frac{1}{3} } }  \\  \\   \bigg({ \frac{343}{1331} } \bigg)^{ \frac{1}{3} } =  \frac{7}{11}  \\  \\

Hope it helps you.

Answered by FanzyRacer
7

Answer:

7/11

Explanation:

(7^3/11^3)^1/3

=(7/11)^1/3×3

=7/11

PLS MARK AS BRAINLIEST!!!!

Similar questions