evaluate (3cos 55 deg \ 7sin 35 deg) - (4)(cos 70 deg cosec20 deg) \ (7)(tan5 deg tan 25 deg tan 45 deg tan 65 deg tan 85 deg)
Answers
Answered by
6
that is your answer.....
Is this supposed to be:
3cos(55°)/[7sin(35°)] - 4[cos(70°)csc(20°)]/[7tan(5°)tan(25°)tan...‡
If so, use:
tan(90° - x) = cot(x) <==> cot(90° - x) = tan(x)
sin(90° - x) = cos(x) <==> cos(90° - x) = sin(x).
So we have:
3cos(55°)/[7sin(35°)]
=> 3sin(90° - 55°)/[7sin(35°)]
= 3sin(35°)/[7sin(35°)]
= 3/7.
4 * [cos(70°)csc(20°)]/[7 * tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
=> (4/7)[cos(70°)/sin(20°)]/[tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
= (4/7)[sin(20°)/sin(20°)]/[tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
= (4/7)/[tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
= 4/[7 * tan(5°)tan(85°) * tan(25°)tan(65°) * tan(45°)]
= 4/[7 * tan(5°)cot(5°) * tan(25°)cot(25°) * tan(45°)]
= 4/(7 * 1 * 1 * 1)
= 4/7.
Thus, the expression equals 3/7 - 4/7 = -1/7.
I hope this helps!
Is this supposed to be:
3cos(55°)/[7sin(35°)] - 4[cos(70°)csc(20°)]/[7tan(5°)tan(25°)tan...‡
If so, use:
tan(90° - x) = cot(x) <==> cot(90° - x) = tan(x)
sin(90° - x) = cos(x) <==> cos(90° - x) = sin(x).
So we have:
3cos(55°)/[7sin(35°)]
=> 3sin(90° - 55°)/[7sin(35°)]
= 3sin(35°)/[7sin(35°)]
= 3/7.
4 * [cos(70°)csc(20°)]/[7 * tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
=> (4/7)[cos(70°)/sin(20°)]/[tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
= (4/7)[sin(20°)/sin(20°)]/[tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
= (4/7)/[tan(5°) * tan(25°) * tan(45°) * tan(65°) * tan(85°)]
= 4/[7 * tan(5°)tan(85°) * tan(25°)tan(65°) * tan(45°)]
= 4/[7 * tan(5°)cot(5°) * tan(25°)cot(25°) * tan(45°)]
= 4/(7 * 1 * 1 * 1)
= 4/7.
Thus, the expression equals 3/7 - 4/7 = -1/7.
I hope this helps!
Attachments:
Similar questions