Math, asked by FarazArif, 7 months ago

Evaluate: (-4/3)power –2​

Answers

Answered by newsingh409
0

Answer:

this is your answer.

Step-by-step explanation:

hope it helped you

Attachments:
Answered by Asterinn
3

 \implies \bf \bigg( { \dfrac{ - 4}{3} \bigg )}^{ - 2}

We know that :-

 \underline {\boxed{  \bf  \large  \bigg({\dfrac{a}{b} \bigg )}^{ - n}  =\bigg({\dfrac{b}{a} \bigg )}^{  n} } }

Therefore :-

 \implies \bf \bigg( { \dfrac{ - 4}{3} \bigg )}^{ - 2}  = \bigg( { \dfrac{ - 3}{4} \bigg )}^{  2}

 \implies \bf  \bigg( { \dfrac{ - 3}{4} \bigg )}^{  2} = \dfrac{ - 3}{4}  \times \dfrac{ - 3}{4}

(-3)²= 9

4² = 16

\implies \bf   \dfrac{ - 3}{4}  \times \dfrac{ - 3}{4} =  \dfrac{9}{16}

\implies \bf  \dfrac{ 9}{16}

____________________

\blue {\underline \blue{ \boxed{ \bf \large \pink{ learn  \: more : }}}}

1)a^m \times a^n= {a}^{(m + n)}

2) {( {a}^{m})}^{n}   =  {a}^{mn}

3) {ab}^{n}  =  {a}^{n}  {b}^{n}

4) \frac{ {(a)}^{m} }{ {(a)}^{n} } = {a}^{m - n}

5) {a}^{ - b}  =  \frac{1}{ {a}^{b} }

Similar questions