Evaluate: 4 sin^2 60° + 3 tan^2 30° - 8 sin 45° cos 45°
Answers
Answered by
0
Step-by-step explanation:
4× √3/2^2 + 3×1/√3^2 - 8× 1/√2 ×1/√2 =
3+1-4=0
the answer is zero(0)
Answered by
2
Answer:
4(Sin² 60°) + 3(Tan² 30°) - 8(Sin 45°)(Cos 45°) = 0
Step-by-step explanation:
We know that,
Sin 60° = √3/2
Tan 30° = 1/√3
Sin 45° = 1/√2
Cos 45° = 1/√2
So we have,
4(Sin² 60°) + 3(Tan² 30°) - 8(Sin 45°)(Cos 45°)
4(Sin 60°)² + 3(Tan 30°)² - 8(Sin 45°)(Cos 45°)
4(√3/2)² + 3(1/√3)² - 8(1/√2)(1/√2)
4(3/4) + 3(1/3) - 8(1/2)
3 + 1 - 4
4 - 4
0
Hence,
4(Sin² 60°) + 3(Tan² 30°) - 8(Sin 45°)(Cos 45°) = 0
Hope it helped and believing you understood it........All the best
Similar questions