Evaluate ∫ (4 sin x – 3 cos x) dx.
Answers
Answered by
8
Answer:
-4cosx - 3sinx
xmxpsjcs
Answered by
4
Given:
A mathematical integration ∫ (4sinx – 3cosx)dx.
To Find:
The integral of the above function.
Solution:
The given problem can be solved using the concepts of integration.
1. The given integral is ∫ (4sinx – 3cosx)dx.
2. According to the concepts of integration,
- ∫sinx dx = -cosx + c,
- ∫cosx dx = sinx + c,
3. Use the above formula in the given questions,
=> ∫ (4sinx – 3cosx)dx = ∫(4sinx)dx – ∫(3cosx)dx,
=> ∫ (4 sin x – 3 cos x) dx = 4∫(sinx)dx – 3∫(cosx)dx,
=> ∫(4sinx)dx – ∫(3cosx)dx = 4(-cosx) - 3(sinx) +c,
=> ∫ (4 sin x – 3 cos x) dx. = -4cosx -3sinx + c.
Therefore, the value of ∫ (4sinx – 3 cos x)dx is -4cosx -3sinx + c.
Similar questions