Math, asked by ranji22931125, 4 months ago

Evaluate ∫ (4 sin x – 3 cos x) dx.​

Answers

Answered by amansharma264
5

EXPLANATION.

⇒ ∫(4Sin x - 3Cos x)dx.

As we know that,

It also write as,

⇒ ∫(4Sin x dx - 3Cos x dx).

⇒ ∫(4Sin x)dx - ∫(3Cos x)dx.

As we know that 4 & 3 are the constant term it take outside from integration, we get.

⇒ 4∫Sin(x)dx - 3∫Cos(x)dx.

⇒ 4(-Cos x) - 3(Sin x) + c.

⇒ -4Cos x - 3Sin x + c.

⇒ -[4Cos x + 3Sin x] + c.

                                                                                                                         

MORE INFORMATION.

Standard integrals.

(1) = ∫Sin(x)dx = -cos(x) + c.

(2) = ∫cos(x)dx = sin(x) + c.

(3) = ∫tan(x)dx = ㏒(sec(x)) + c = -㏒(cos(x)) + c.

(4) = ∫cot(x)dx = ㏒(sin(x)) + c.

(5) = ∫sec(x)dx = ㏒(sec(x) + tan(x)) + c = -㏒(sec(x) - tan(x)) + c = ㏒tan(π/4 + x/2) + c.

(6) = ∫Cosec(x)dx = -㏒(cosec(x) + cot(x)) + c = ㏒(cosec(x) - cot(x)) + c = ㏒tan(x/2) + c.

(7) = ∫sec(x).tan(x)dx = sec(x) + c.

(8) = ∫cosec(x).cot(x)dx = -cosec(x) + c.

(9) = ∫sec²xdx = tan(x) + c.

(10) = ∫cosec²xdx = -cot(x) + c.

Answered by Anonymous
1

Hope it help all.

#Radhalovekrishna

Attachments:
Similar questions