Math, asked by gira54, 3 months ago

Evaluate ∫ (4 sin x – 3 cos x) dx.​

Answers

Answered by Anonymous
25

Question:-

Evaluate ∫ (4 sin x – 3 cos x) dx.

solution :-

Evaluate ∫ (4 sin x – 3 cos x) dx.

⇒ ∫(4Sin x dx - 3Cos x dx).

⇒ ∫(4Sin x)dx - ∫(3Cos x)dx.

As we know that 4 & 3 are the constant term it take outside from integration, we get.

⇒ 4∫Sin(x)dx - 3∫Cos(x)dx.

⇒ 4(-Cos x) - 3(Sin x) + c.

⇒ -4Cos x - 3Sin x + c.

⇒ -[4Cos x + 3Sin x] + c.

                                                                                                                         

Hope this help you .

Answered by kanishkagupta1234
13

\huge{\underline{\bold{\orange{Question—}}}}

∫ (4 sin x – 3 cos x) dx.

 \huge \colorbox{lime}{Answer}

4 (-Cos x) - 3 Sin x

- 4 cos x - 3 Sin x

- ( 4 cos x + 3 Sin x )

Attachments:
Similar questions