Evaluate ∫ (4 sin x – 3 cos x) dx.
Answers
Answered by
25
Question:-
Evaluate ∫ (4 sin x – 3 cos x) dx.
solution :-
Evaluate ∫ (4 sin x – 3 cos x) dx.
⇒ ∫(4Sin x dx - 3Cos x dx).
⇒ ∫(4Sin x)dx - ∫(3Cos x)dx.
As we know that 4 & 3 are the constant term it take outside from integration, we get.
⇒ 4∫Sin(x)dx - 3∫Cos(x)dx.
⇒ 4(-Cos x) - 3(Sin x) + c.
⇒ -4Cos x - 3Sin x + c.
⇒ -[4Cos x + 3Sin x] + c.
Hope this help you .
Answered by
13
∫ (4 sin x – 3 cos x) dx.
→ 4 (-Cos x) - 3 Sin x
→ - 4 cos x - 3 Sin x
→ - ( 4 cos x + 3 Sin x )
Attachments:
Similar questions