Math, asked by kanishkreddykop0utor, 1 year ago

evaluate √5+√2 by √5-√2. given that √10=3.162

Answers

Answered by DaIncredible
81
Identities used :

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

Given,
√10 = 3.162

Now,

 \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }  \\

On rationalizing the denominator we get,

 =  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  -  \sqrt{2} }  \times  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5} +  \sqrt{2}  }  \\  \\  =  \frac{ {( \sqrt{5} )}^{2}  +  {( \sqrt{2} )}^{2}  + 2( \sqrt{5} )( \sqrt{2}) }{ {( \sqrt{5}) }^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  =  \frac{5 + 2 +  2\sqrt{10} }{5 - 2}  \\  \\  =  \frac{7 +2 \sqrt{10}  }{3}  \\  \\  =  \frac{7 + 2 \times 3.162}{3}  \\  \\  =  \frac{7 + 6.324}{3}  \\  \\  =  \frac{13.324}{3}  \\  \\  = 4.441 \: (approx)

nancyyy: :hats_off :p
DaIncredible: (sarcasm)
nancyyy: =_="
DaIncredible: thanks for brainliest
kanishkreddykop0utor: no problem
DaIncredible: :D
Answered by Anonymous
30
Heya friend !!!!

•°• Here's your answer •°•

que =  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  -  \sqrt{2} }  \\  \\  =  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5} -  \sqrt{2}  }  \times  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  +  \sqrt{2} }  \\  \\  identities \:  \: used \:  \:   \\  \\  = (a + b)(a + b) =  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  = (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{5}  +  \sqrt{2} )}^{2} }{ { (\sqrt{5}) }^{2}  -  { (\sqrt{2} )}^{2} }  \\  \\  =  \frac{ {( \sqrt{5} )}^{2} +  {( \sqrt{2} )}^{2}   + 2 \times  \sqrt{5} \times  \sqrt{2}  }{ \sqrt{5 \times 5}  -  \sqrt{2 \times 2} }  \\  \\  =  \frac{5 + 2 + 2 \sqrt{10} }{5 - 2}  \\  \\  = put \:  \:  \sqrt{10}   = 3.162 \\  \\  = \frac{7 + 2 \times 3.162}{3}  \\  \\  =  \frac{7 + 6.324}{3}  \\  \\  =  \frac{13.324}{3}  \\  \\

Hope it will help you ☆▪☆

Thanks ^_^

☆ Be Brainly ☆

DaIncredible: chha gayi ;p
Similar questions