Math, asked by SnehaVyas, 7 months ago

Evaluate 5 sin^2 30° + cos^2 45°+4 tan^2 30° / 2 sin 30°cos 30° - tan 45°​

Answers

Answered by MoodyCloud
5

To evaluate:-

 \bigstar \sf \:  \dfrac{5 \:   {sin}^{2} 30 \degree +  {cos}^{2} 45 \degree + 4 \:  {tan}^{2} 30 \degree}{2 \:  {sin}^{2}30 \degree \:  cos \:  30 \degree - tan \: 45 \degree}

Solution:-

 \bigstar \sf \:  \dfrac{5 \:   {sin}^{2} 30 \degree +  {cos}^{2} 45 \degree + 4 \:  {tan}^{2} 30 \degree}{2 \:  {sin}^{2}30 \degree \:  cos \:  30 \degree - tan \: 45 \degree}

 \\

sin 30° = 1/2

cos 45° = 1/√2

tan 30° = 1/√3

cos 30° = √3/2

tan 45° = 1

 \\

Put all the values of ratio's,

 \implies \sf \dfrac{5 \times  {( \dfrac{1}{2} )}^{2} +  {( \dfrac{1}{ \sqrt{2} } )}^{2} + 4 \times  {( \dfrac{1}{ \sqrt{3} } )}^{2}  }{2 \times  \dfrac{1}{2} \times  \dfrac{ \sqrt{3} }{2}   - 1}

 \implies \sf  \dfrac{5 \times  \dfrac{5}{4}  +  \dfrac{1}{2}  + 4 \times  \dfrac{1}{3} }{2 \times  \dfrac{1}{2} \times  \dfrac{ \sqrt{3} }{2} - 1  }

 \implies \sf \:  \dfrac{ \dfrac{5}{4} +  \dfrac{1}{2} + \dfrac{4}{3} }{ \dfrac{ \sqrt{3} }{2}  - 1}

 \implies \sf \:  \dfrac{ \dfrac{15 + 6 + 16}{12} }{ \dfrac{ \sqrt{3}  - 2}{2} }

 \implies \sf \:  \dfrac{37}{12} \times  \dfrac{2}{ \sqrt{3}  - 2}

 \implies \sf \dfrac{5}{6( \sqrt{3} - 2) }

Therefore,

 \bigstar \sf \:  \dfrac{5 \:   {sin}^{2} 30 \degree +  {cos}^{2} 45 \degree + 4 \:  {tan}^{2} 30 \degree}{2 \:  {sin}^{2}30 \degree \:  cos \:  30 \degree - tan \: 45 \degree} = \dfrac{5}{6( \sqrt{3} - 2)}

Similar questions