Evaluate 50c11+50c12+51c13-52c13
Answers
Answered by
3
Answer:
The value of
is 0
Step-by-step explanation:
Formula used:
Number of combinations of n things taken r at a time.
Answered by
1
Answer:
0
Step-by-step explanation:
Evaluate 50c11+50c12+51c13-52c13
⁵⁰C₁₁ + ⁵⁰C₁₂ + ⁵¹C₁₃ - ⁵²C₁₃
ⁿCₓ = n! / (x!) (n-x)!
= 50!/( 11! * 39! ) + 50!/(12! * 38!) + 51!/(13! * 38!) - 52!/ (13! * 39!)
= 50!/(11! * 38 !) ( 1/39 + 1/12 + 51/(13*12) - 52*51/(13 * 12 * 39)
= 50!/(11! * 38 !) (1/(39 * 12 * 13) ( (12 * 13) + (39 * 13) + (51*39) - 52*51))
= 50!/(11! * 38 !) (1/(39 * 12 * 13) (156 + 507 + 1989 - 2652)
= 50!/(11! * 38 !) (1/(39 * 12 * 13) (2652 - 2652)
= 50!/(11! * 38 !) (1/(39 * 12 * 13) (0)
= 0
Similar questions