Math, asked by myugratan, 29 days ago

Evaluate : 62-9Cb-1) if b= 1.1
[Hint : Put b = 1.1 =11/10]​

Answers

Answered by shwetavirvadiya
1

Step-by-step explanation:

Answer:-

Given:-

Distance between two points S(- 2 , 3) & T(3 , y) = 13 units.

We know that,

Distance between two points (x₁ , y₁) & (x₂ , y₂) is

\red{\sf \: \sqrt{ {(x_2 - x_1)}^{2} + ( {y_2 - y_1)}^{2} }}

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

Let,

x₁ = - 2

y₁ = 3

x₂ = 3

y₂ = y.

So,

According to the question;

\implies \sf \: \sqrt{ {(3 - ( - 2))}^{2} + {(y - 3)}^{2} } = 13⟹

(3−(−2))

2

+(y−3)

2

=13

On squaring both sides we get,

\begin{gathered} \implies \sf \: \bigg( \sqrt{ {(3 + 2)}^{2} + {(y - 3)}^{2} } \bigg) ^{2} = 13^{2} \\ \\ \\ \implies \sf \: {5}^{2} + {(y - 3)}^{2} = 169\end{gathered}

⟹(

(3+2)

2

+(y−3)

2

)

2

=13

2

⟹5

2

+(y−3)

2

=169

Using (a - b)² = a² + b² - 2ab we get,

\begin{gathered} \: \implies \sf \:25 + {y}^{2} + 9 - 6y = 169 \\ \\ \\ \implies \sf \: {y}^{2} - 6y + 34 - 169 = 0 \\ \\ \\ \implies \sf \: {y}^{2} - 6y - 135 = 0 \\ \\ \\ \implies \sf \: {y}^{2} + 9y - 15y - 136 = 0 \\ \\ \\ \implies \sf \:y(y + 9) - 15(y + 9) = 0 \\ \\ \\ \implies \sf \:(y + 9)(y - 15) = 0 \\ \\ \\ \implies \boxed{ \sf \:y = - 9 \: ,\: 15}\end{gathered}

⟹25+y

2

+9−6y=169

⟹y

2

−6y+34−169=0

⟹y

2

−6y−135=0

⟹y

2

+9y−15y−136=0

⟹y(y+9)−15(y+9)=0

⟹(y+9)(y−15)=0

y=−9,15

∴ The values of y are - 9 & 15 to satisfy the given condition.

plz mark me brainlest

Answered by AryanChauhan888
1

Step-by-step explanation:

join the meeting hiv-ytej-eno

Similar questions