Math, asked by MANIVELLOGU131, 11 months ago

Evaluate: 6³+7³+8³+9³+10³ using property

Answers

Answered by rudraprasad93
0

Step-by-step explanation:

 {(6 + 7 + 8 + 9 + 10)}^{3}  \\  \\  =  {40}^{3}  \\  \\  = 40 \times 40 \times 40 \\  \\  = 1600 \times 40 \\  \\  = 64000

Answered by payalchatterje
0

Answer:

Required value of 6³+7³+8³+9³+10³ is 2800.

Step-by-step explanation:

Given,

 {6}^{3}  +  {7}^{3}  +  {8}^{3}  +  {9}^{3} +  {10}^{3}

We want to find value of this expression.

We can write,

 {6}^{3}  +  {7}^{3}  +  {8}^{3}  +  {9}^{3} +  {10}^{3}   = ( {1}^{3}  +  {2}^{3}  +  {3}^{3}  +  {4}^{3} +  {5}^{3} )  +   {6}^{3}  +  {7}^{3}  +  {8}^{3}  +  {9}^{3} +  {10}^{3}   - ( {1}^{3}  +  {2}^{3}  +  {3}^{3}  +  {4}^{3} +  {5}^{3} )

We know sum of cube of n natural numbers

 =  \frac{ {n}^{2} {(n + 1)}^{2}  }{4}

Or,

 {1}^{3}  +  {2}^{3}  +  {3}^{3}  + ...... {n}^{3}    =  \frac{ {n}^{2} {(n + 1)}^{2}  }{4}

Now,

 {1}^{3}  +  {2}^{3}  +  {3}^{3}  +  {4}^{3} +  {5}^{3} =  \frac{ {5}^{2} {(5 + 1)}^{2}  }{4}  \\  =  \frac{25 \times 36}{4}  \\  = 25 \times 9 \\  = 225

and

 {1}^{3}  +  {2}^{3}  +  {3}^{3}  +  {4}^{3} +  {5}^{3}   +  ....... +  {10}^{3}  =  \frac{ {10}^{2}  {(10 + 1)}^{2} }{4}

 =  \frac{100 \times 121}{4}  \\  = 25 \times 121 \\  = 3025

So,

 {6}^{3}  +  {7}^{3}  +  {8}^{3}  +  {9}^{3} +  {10}^{3}   \\  = 3025 - 225 \\  = 2800

Therefore required value of 6³+7³+8³+9³+10³ is 2800.

Cube related two more questions:

https://brainly.in/question/5692368

https://brainly.in/question/1266217

#SPJ2

Similar questions