Math, asked by anjalisharma29, 1 year ago

evaluate [(64^1/2)^1/6]^2​

Answers

Answered by utkarshshivhate
16

Answer:

(((64)^1/2)1/6)2

((64)^1/2*1/6*2)

((64)^1/3)1/2

(4)^1/2

2

Answered by payalchatterje
0

Answer:

Required value is 2.

Step-by-step explanation:

Given,

 {{64}^{ \frac{1}{2}^{ \frac{1}{6} } } }^{2}

Now by prime factorisation,

64  = 2 \times 2 \times 2 \times 2 \times 2 \times 2   =  {2}^{6}

So,

 {{64}^{ \frac{1}{2}^{ \frac{1}{6} } } }^{2}   \\  =  {( {{2}^{6}) }^{ \frac{1}{2}^{ \frac{1}{6} } } }^{2}  \\    =   { { {2}^{(6 \times  \frac{1}{2}) } }^{ \frac{1}{6} } }^{2}  \\  =  { { {2}^{3} }^{ \frac{1}{6} } }^{2}  \\  =  { {2}^{(3 \times  \frac{1}{6} )} }^{2}  \\  =  { {2}^{ \frac{1}{2} } }^{2}  \\  =  {2}^{2 \times  \frac{1}{2} }  \\  =  {2}^{1}  \\  = 2

Here applied formulas are

 {x}^{ {y}^{z} }  =  {x}^{y \times z} \\  {x}^{1}  = x

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

Similar questions