Math, asked by khushi023023, 11 months ago

Evaluate :- [7{(8)^ ⅓ +(125) ^⅓}^2]⅓
Answer it...its urgent...please ​

Answers

Answered by labanayakhillar6
0

Step-by-step explanation:

Evaluate :- [7{(8)^ ⅓ +(125) ^⅓}^2]⅓

Answer it...its urgent...please

Answered by Anonymous
13

Answer:

Question :

Evaluate :-

{\implies{\Bigg[ 7\bigg\{{(8)}^{\frac{1}{3}}  +  {(125)}^{\frac{1}{3} }\bigg\}^{2} \Bigg]^{\frac{1}{3}}}}

Solution :

{ = {\Bigg[ 7\bigg\{{(8)}^{\frac{1}{3}}  +  {(125)}^{\frac{1}{3} }\bigg\}^{2} \Bigg]^{\frac{1}{3}}}}

{ = {\Bigg[ 7\bigg\{{({2}^{3})}^{\frac{1}{3}}  +  {({5}^{3})}^{\frac{1}{3} }\bigg\}^{2} \Bigg]^{\frac{1}{3}}}}

Using law of exponent rule to continuously evaluating the equation : (aᵐ)ⁿ = aᵐⁿ

{ = {\Bigg[ 7\bigg\{{({2})}^{3 \times \frac{1}{3}}  +  {({5})}^{3 \times \frac{1}{3} }\bigg\}^{2} \Bigg]^{\frac{1}{3}}}}

{ = {\Bigg[ 7\bigg\{{({2})}^{\cancel{3} \times \frac{1}{\cancel{3}}}  +  {({5})}^{\cancel{3} \times \frac{1}{\cancel{3}}}\bigg\}^{2} \Bigg]^{\frac{1}{3}}}}

{ = {\Bigg[ 7\bigg\{2 + 5\bigg\}^{2} \Bigg]^{\frac{1}{3}}}}

{ = {\Bigg[ 7\bigg\{ \:  \: 7 \:  \: \bigg\}^{2} \Bigg]^{\frac{1}{3}}}}

{ = {\Bigg[ 7\bigg\{ \:  7  \times 7 \:  \bigg\} \Bigg]^{\frac{1}{3}}}}

{ = {\Bigg[ 7 \times 7 \times 7\Bigg]^{\frac{1}{3}}}}

{ = {\Big[  \:  \: {7}^{3}  \:  \: \Big]^{\frac{1}{3}}}}

Again using law of exponent rule to continuously evaluating the equation : (aᵐ)ⁿ = aᵐⁿ

{ = {\Big[  \:  \: {7} \:  \: \Big]^{3 \times \frac{1}{3}}}}

{ = {\Big[  \:  \: {7} \:  \: \Big]^{\cancel{3} \times \frac{1}{\cancel{3}}}}}

{ = {\Big[  \:  \: {7} \:  \: \Big]^{1}}}

{={\sf{\underline{\underline{\red{Ans  =   7 }}}}}}

Hence, the answer is 7.

\rule{220pt}{2.5pt}

Learn More :

☼ Algebraic identities:-

  • ➛ (a+b)²+(a-b)² = 2a²+2b²
  • ➛ (a+b)²-(a-b)² = 4ab
  • ➛ (a+b)(a -b) = a²-b²
  • ➛ (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
  • ➛ (a-b)³ = a³-b³-3ab(a-b)
  • ➛ (a³+b³) = (a+b)(a²-ab+b²)
  • ➛ a²+b² = (a+b)²-2ab
  • ➛ a³-b³ = (a-b)(a²+ab +b²)
  • ➛ If a + b + c = 0 then a³ + b³ + c³ = 3abc

☼ BODMAS :

↝ BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

  • »» B - Brackets,
  • »» O - Order of powers or roots,
  • »» D - Division,
  • »» M - Multiplication 
  • »» A - Addition
  • »» S - Subtraction.

↝ It means that expressions having multiple operators need to be simplified from left to right in this order only.

☼ BODMAS RULE :

↝ First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

  • ↠ Addition (+)
  • ↠ Subtraction (-)
  • ↠ Multiplication (×)
  • ↠ Division (÷)
  • ↠ Brackets ( )

☼ EXPONENT :

↝ The exponent of a number says how many times to use the number in a multiplication.

☼ LAW OF EXPONENT :

The important laws of exponents are given below:

  • ➠ {\rm{{a}^{m} \times {a}^{n} = {a}^{m + n}}}

  • ➠ {\rm{{a}^{m}/{a}^{n} = {a}^{m - n}}}

  • ➠ {\rm{({a}^{m})^{n} = {a}^{mn}}}

  • ➠ {\rm{{a}^{n}/{b}^{n} = ({a/b})^{n} }}

  • ➠ {\rm{{a}^{0} = 1}}

  • ➠ {\rm{{a}^{ - m} = {1/a}^{m}}}

  • ➠ {\rm{{a}^{\frac{1}{n} } = \sqrt[n]{a}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions