Math, asked by amaankmr6, 8 months ago

evaluate 8^-1 and 3^-3

Answers

Answered by Asterinn
4

QUESTION :

Evaluate =>

  1.  {8}^{ - 1}
  2.  {3}^{ - 3}

SOLUTION :

1. For evaluation of =>

 {8}^{ - 1}

we must apply the concept -

 {a}^{ - 1}  =  \frac{1}{a}

Therefore :-

 {8}^{ - 1}  =  \frac{1}{8}

2. For evaluation of =>

 {3}^{ - 3}

we must apply the concept =>

 {a}^{ - r}  =  \frac{1}{ {a}^{r} }

therefore :-

 {3}^{ - 3}  =  \frac{1}{ {3}^{3} }

we know => 3³ = 3×3×3 = 9

so , we get =>

 \frac{1}{ {3}^{3} }  =  \frac{1}{3}  \times  \frac{1}{3}  \times  \frac{1}{3}

     \frac{1}{9}

ANSWER :

1.

 {8}^{ - 1}  =  \frac{1}{8}

2.

 {3}^{ - 3}  =  \frac{1}{9}

_________________________________

MORE CONCEPTS RELATED TO EXPONENTS =>

1.

  {({a}^{e} )}^{p}  =  {a}^{e \times p}

2.

 {a}^{e}  \times  {a}^{h}  =  {(a)}^{e + h}

3.

 {a}^{e}  \div  {a}^{f}  =  {(a)}^{e - f}

4.

 { (\frac{a}{b}) }^{ - n}  = { (\frac{b}{a}) }^{  n}

5.

 {(a)}^{0}  = 1

6.

 { (\frac{a}{b}) }^{m}  =  \frac{a}{b}  \: \times \frac{a}{b} \times \frac{a}{b}..... \: m \: times

Similar questions