Evaluate: 8√3cosec²30° sin60° cos60° cos²45°sin 45°tan30°cosec³45°
(class 10 CBSE SAMPLE PAPER 2017-18 MATHS)
Answers
Answered by
7
SOLUTION:
8√3cosec²30° sin 60° cos 60° cos²45°sin 45°tan 30°cosec³45°
= 8√3(1/sin²30°). sin 60° cos 60° cos²45°sin 45°(sin 30°/cos 30°). 1/sin³45°
[ Cosec A= 1/sin A, tan A= sinA/cosA]
= 8√3(1/sin²30°)(sin 30°) sin 60° cos 60° cos²45°(1/cos 30°). sin 45°/sin³45°
= 8√3(1/sin 30°) sin 60° cos 60° cos²45°(1/cos 30°). 1/sin²45°
= 8√3(1/1/2) (√3/2) (½) (1/√2)²(1/√3/2). 1/(1/√2)²
[ sin 30°= 1/2, sin 60° = √3/2, cos 60°=1/2,cos 45°= 1/√2, cos 30°=√3/2, sin 45°= 1/√2]
= 8√3 (2×√3×2×2) / (2×2×2×√3)
= 8×2×3×2×2 /8√3
= 24/√3
[On multiply numerator and denominator by √3]
= 24√3 / √3×√3= 24√3/3= 8√3
HOPE THIS WILL HELP YOU...
8√3cosec²30° sin 60° cos 60° cos²45°sin 45°tan 30°cosec³45°
= 8√3(1/sin²30°). sin 60° cos 60° cos²45°sin 45°(sin 30°/cos 30°). 1/sin³45°
[ Cosec A= 1/sin A, tan A= sinA/cosA]
= 8√3(1/sin²30°)(sin 30°) sin 60° cos 60° cos²45°(1/cos 30°). sin 45°/sin³45°
= 8√3(1/sin 30°) sin 60° cos 60° cos²45°(1/cos 30°). 1/sin²45°
= 8√3(1/1/2) (√3/2) (½) (1/√2)²(1/√3/2). 1/(1/√2)²
[ sin 30°= 1/2, sin 60° = √3/2, cos 60°=1/2,cos 45°= 1/√2, cos 30°=√3/2, sin 45°= 1/√2]
= 8√3 (2×√3×2×2) / (2×2×2×√3)
= 8×2×3×2×2 /8√3
= 24/√3
[On multiply numerator and denominator by √3]
= 24√3 / √3×√3= 24√3/3= 8√3
HOPE THIS WILL HELP YOU...
Answered by
4
8√3cosec²30° × sin 60° × cos 60° × cos²45° × sin 45° × tan 30°× cosec³45°
Now,
We know that
Also,
= 8√3(1/1/2) (√3/2) × (1/2) × (1/√2)² × (1/√3/2) × 1/(1/√2)²
= 8√3
Similar questions