Math, asked by araji03036, 9 months ago

evaluate 8 by cos square theta minus 8 by cot square theta ​

Answers

Answered by VineetaGara
2

Answer:

Step-by-step explanation:

8/cos^{2}θ - 8/cot²θ

= 8(1/cos²θ - 1/cot²θ) , taking 8 as a common element

=8(sec²θ - tan²θ) , since 1/cosθ=secθ

                                  and 1/cotθ= tanθ

=8×1 , since sec²θ - tan²θ=1

=8

Answered by harendrachoubay
0

The value of \dfrac{8}{\cos^2 \theta} -\dfrac{8}{\cot^2 \theta} = 8

Step-by-step explanation:

We have,

\dfrac{8}{\cos^2 \theta} -\dfrac{8}{\cot^2 \theta}

To find, the value of \dfrac{8}{\cos^2 \theta} -\dfrac{8}{\cot^2 \theta} = ?

\dfrac{8}{\cos^2 \theta} -\dfrac{8}{\cot^2 \theta}

= 8\sec^2 \theta -\dfrac{8}{\cot^2 \theta}

Using the trigonometric identity,

\sec A=\dfrac{1}{\cos A}

= 8\sec^2 \theta -8\tan^2 \theta

Using the trigonometric identity,

\tan A=\dfrac{1}{\cot A}

= 8(\sec^2 \theta -8\tan^2 \theta)

Using the trigonometric identity,

\sec^2 A -\tan^2 A=1

= 8 × 1

= 8

∴ The value of \dfrac{8}{\cos^2 \theta} -\dfrac{8}{\cot^2 \theta} = 8

Similar questions