Math, asked by Rahmaankhan, 1 year ago

evaluate 8 by cot square teta - 8 by cos square teta​

Answers

Answered by saumya5476
2

Step-by-step explanation:

= 8/cot^2 theta - 8/cos^2 theta

= 8sin^2theta/ cos^2theta - 8/cos^2theta

= 8sin^2theta -8/cos^2theta

= -8 (1 - sin^2theta )/cos^2theta

= -8 cos^2theta /cos^2theta

= -8

Answered by harendrachoubay
0

The value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} = - 8

Step-by-step explanation:

We have,

\dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta}

To find, the value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} = ?

\dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta}

=\dfrac{8}{\dfrac{\cos^2 \theta}{\sin^2 \theta} }-\dfrac{8}{\cos^2 \theta}

Using the trigonometric identity,

\cot \theta}=\dfrac{\cos \theta}{\sin \theta}

=\dfrac{8\sin^2 \theta}{\cos^2 \theta}-\dfrac{8}{\cos^2 \theta}

= \dfrac{8}{\cos ^2 \theta} (\sin^2 \theta-1)

= \dfrac{8}{\cos ^2 \theta} (-\cos ^2 \theta)

Using the trigonometric identity,

\sin^2 \theta-\cos^2 \theta=1

= - 8

Thus, the value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} = - 8

Similar questions