Math, asked by mustafaisal92, 10 months ago

evaluate 8 by cot square theta minus 8 by cos square theta​

Answers

Answered by tanuja42
44

Step-by-step explanation:

answer is in pic

follow me

make it BRIANLIEST

Attachments:
Answered by harendrachoubay
5

The value of \dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A} =8\csc^2 A}.

Step-by-step explanation:

We have,

\dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A}

To find, the value of \dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A} = ?

\dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A}

Using the trigonometric identity,

\cot A=\dfrac{\cos A}{\sin A}

=\dfrac{8}{\dfrac{\cos^2 A}{\sin^2 A} }-\dfrac{8}{\cos^2 A}

= \dfrac{8}{\cos^2 A \sin^2 A}-\dfrac{8}{\cos^2 A}

Taking commonas \dfrac{8}{\cos^2 A}, we get

= \dfrac{8}{\cos^2 A}(\dfrac{1}{ \sin^2 A}-1)

=\dfrac{8}{\cos^2 A}(\dfrac{1-\sin^2 A}{\sin^2 A})

Using the trigonometric identity,

\cos^2 A=1-\sin^2 A

=\dfrac{8}{\cos^2 A}(\dfrac{\cos^2 A}{\sin^2 A})

=\dfrac{8}{\sin^2 A}

=8\csc^2 A}

Thus, the value of \dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A} =8\csc^2 A}.

Similar questions