Math, asked by pitlaumarani1719, 11 months ago

evaluate 8/cot^2-8/cos^2

Answers

Answered by harendrachoubay
4

The value of \dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A} =8\csc^2 A}.

Step-by-step explanation:

We have,

\dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A}

To find, the value of \dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A} = ?

\dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A}

Using the trigonometric identity,

\cot A=\dfrac{\cos A}{\sin A}

=\dfrac{8}{\dfrac{\cos^2 A}{\sin^2 A} }-\dfrac{8}{\cos^2 A}

=\dfrac{8}{\cos^2 A \sin^2 A}-\dfrac{8}{\cos^2 A}

Taking commonas \dfrac{8}{\cos^2 A}, we get

=\dfrac{8}{\cos^2 A}(\dfrac{1}{ \sin^2 A}-1)

=\dfrac{8}{\cos^2 A}(\dfrac{1-\sin^2 A}{\sin^2 A})

Using the trigonometric identity,

\cos^2 A=1-\sin^2 A

=\dfrac{8}{\cos^2 A}(\dfrac{\cos^2 A}{\sin^2 A})

=\dfrac{8}{\sin^2 A}

=8\csc^2 A}

Thus, the value of \dfrac{8}{\cot^2 A}-\dfrac{8}{\cos^2 A} =8\csc^2 A}.

Answered by amanullahkhan0957
2

Cot^2 can be written as cos^2/sin^2

And cos^2 can be written as 1/sec^2

So now the denominator changes

8/cos^2/sin^2-8/1/sec^2

Now , the step follows

8(sin^2)/cos^2-8(sec^2)/1

8(tan^2)-8(sec^2)

Taking 8 as common

8(tan^2-sec^2)

We know that sec^2-tan^2=1

Tan^2-sec^2=-1

8(-1)=-8

Therefore, 8/cot^2-8/cos^2=-8

Similar questions