Math, asked by ummehani0804, 9 months ago

Evaluate 8/cot2 theta - 8/cos2 theta

Answers

Answered by Ves1857
4

If it is for square and cos square then ans in attachment

Hope this help you

Attachments:
Answered by harendrachoubay
3

The value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} is equal to - 8.

Step-by-step explanation:

We have,

\dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta}

To find, the value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} = ?

\dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta}

=\dfrac{8}{\dfrac{\cos^2 \theta}{\sin^2 \theta} }-\dfrac{8}{\cos^2 \theta}

Using the trigonometric identity,

\cot A}=\dfrac{\cos A}{\sin A}

=\dfrac{8\sin^2 \theta}{\cos^2 \theta}-\dfrac{8}{\cos^2 \theta}

= \dfrac{8}{\cos ^2 \theta} (\sin^2 \theta-1)

= \dfrac{8}{\cos ^2 \theta} (-\cos ^2 \theta)

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

= - 8

Thus, the value of \dfrac{8}{\cot^2 \theta}-\dfrac{8}{\cos^2 \theta} = - 8

Similar questions