Evaluate: (81/16)^-3/4×{(25/9)^-3/2÷(5/2)^-3}
Answers
Answered by
3
(81/16)^-3/4*(25/9)^--3/2 81=3^4 16=2^4 25=5^2 9=3^2 (81/16)^-3/4= [16/81]^3/4=2^3/3^3=8/27 (25/9)^--3/2= [9/25]^3/2=3^3/5^3= 27/125 therfore...show more
Source(s):My Intelligent Brain
Comment
0
0
(81/16)^-3/4 =[(3/2)^4]^ -3/4 =(3/2)^-3 =(2/3)^3 = 8/27 and (25/9)^-3/2 =[(5/3)^2]^ -3/2 =(5/3)^-3 =(3/5)^3 =27/125 therefore (81/16)^
Comment
0
0
(81/16)^-3/4*(25/9)^-3/2 = [(81/16)^1/2]^-3/2*[(25/9)^1/2]^-3 = (9/4)^-3/2*(5/3)^-3 = [(9/4)^1/2]^-3*(3/5)^3 = (3/2)^-3*(27/125) = (2/3)^3*(27/12
Source(s):My Intelligent Brain
Comment
0
0
(81/16)^-3/4 =[(3/2)^4]^ -3/4 =(3/2)^-3 =(2/3)^3 = 8/27 and (25/9)^-3/2 =[(5/3)^2]^ -3/2 =(5/3)^-3 =(3/5)^3 =27/125 therefore (81/16)^
Comment
0
0
(81/16)^-3/4*(25/9)^-3/2 = [(81/16)^1/2]^-3/2*[(25/9)^1/2]^-3 = (9/4)^-3/2*(5/3)^-3 = [(9/4)^1/2]^-3*(3/5)^3 = (3/2)^-3*(27/125) = (2/3)^3*(27/12
Answered by
0
Step-by-step explanation:
For any two real numbers a and b, a, b ≠ 0, and for any two positive integers, m and n
➲ If a be any non - zero rational number, then
a^0 = 1
➲ If a be any non - zero rational number and m,n be integer, then
(a^m)^n = a^mn
➲ If a be any non - zero rational number and m be any positive integer, then
a^-m = 1/a^m
➲ If a/b is a rational number and m is a positive integer, then
(a/b)^m = a^m/b^m
➲ For any Integers m and n and any rational number a, a ≠ 0
a^m × a^n = a^m+n
➲ For any Integers m and n for non - zero rational number a,
a^m ÷ a^n = a^m-n
➲ If a and b are non - zero rational numbers and m is any integer, then
(a+b)^m = a^m × b^m
I hope it's help you...☺
:)
Similar questions