Math, asked by abhinav002862, 8 months ago

Evaluate (999)^3
.........​

Answers

Answered by Anonymous
13

( {999})^{3}

( {999})^{3}  = ( {1000 - 1})^{3}

 = ( {1000})^{3}  -  ({1})^{3}  - 3(1000)(1)(1000 - 1)

(Using identity VII)

( {x - y})^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y) \\  =  {x}^{3}  -  {3x}^{2}y +  {3xy}^{2}  -  {y}^{3}

So, \\  = 1000000000 - 1 - 2997000

 = 997002999

hope it helps u....!!

Answered by harsh253714
2

( {999})^{3}

( {999})^{3}  = ( {1000 - 1})^{3}

 = ( {1000})^{3}  -  ({1})^{3}  - 3(1000)(1)(1000 - 1)

(Using identity VII)

( {x - y})^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y) \\  =  {x}^{3}  -  {3x}^{2}y +  {3xy}^{2}  -  {y}^{3}

So, \\  = 1000000000 - 1 - 2997000

 = 997002999

hope it helps u....!!

Similar questions