Math, asked by siddhi09247, 16 days ago

evaluate (a) (3-√5)(6+√2)​

Answers

Answered by drishtirayal
0

Answer:

Identity used :

(x + y)(x - y) = {x}^{2} - {y}^{2}(x+y)(x−y)=x

2

−y

2

\begin{gathered} \frac{2 \sqrt{6} - \sqrt{5} }{3 \sqrt{5} - 2 \sqrt{6} } \\ \end{gathered}

3

5

−2

6

2

6

5

On rationalizing the denominator we get,

\begin{gathered} = \frac{2 \sqrt{6} - \sqrt{5} }{3 \sqrt{5} - 2 \sqrt{6} } \times \frac{3 \sqrt{5} + 2 \sqrt{6} }{3 \sqrt{5} + 2 \sqrt{6} } \\ \\ = \frac{2 \sqrt{6}(3 \sqrt{5} + 2 \sqrt{6} ) - \sqrt{5}(3 \sqrt{5} + 2 \sqrt{6} )}{ {(3 \sqrt{5} )}^{2} - {(2 \sqrt{6}) }^{2} } \\ \\ = \frac{6 \sqrt{30} + 24 - 15 - 2 \sqrt{30} }{45 - 24} \\ \\ = \frac{9 + 4 \sqrt{30} }{21} \end{gathered}

=

3

5

−2

6

2

6

5

×

3

5

+2

6

3

5

+2

6

=

(3

5

)

2

−(2

6

)

2

2

6

(3

5

+2

6

)−

5

(3

5

+2

6

)

=

45−24

6

30

+24−15−2

30

=

21

9+4

30

Hope this helps ☺

Similar questions