Evaluate (a + b)2 by using method of multiplication of binomial with binomial . Based on your answer, find the value of squares of 51 and 111.
Answers
Answer:
( a² + b² + 2ab )
( 51 )² = 2601
( 101 )² = 10201
Step-by-step explanation:
To find--> Evaluate ( a + b )² by using multiplication of binomial with bionomial and calculate Value of squares of 51 and 111.
Solution---> We know that ,
( x + p ) ( x + q ) = x² + ( p + q )x + pq
Now,
( a + b )² = ( a + b ) ( a + b )
= a ( a + b ) + b ( a + b )
= a a + a b + b a + b b
( a + b )² = a² + 2 ab + b²
Now we find value of 51²,
51² = ( 50 + 1 )²
Applying ( a + b )² = a² + 2ab + b² , we get,
= ( 50 )² + ( 1 )² + 2 ( 50 ) ( 1 )
= 2500 + 1 + 100
= 2601
Now we calculate value of ( 101 )²
( 101 )² = ( 100 + 1 )²
Applying ( a + b )² = a² + b² + 2ab , we get,
= ( 100 )² + ( 1 )² + 2 ( 100 ) ( 1 )
= 10000 + 1 + 200
= 10201
#Answerwithquality
#BAL
Answer:
Step-by-step explanation:
To find--> Evaluate ( a + b )² by using multiplication of binomial with bionomial and calculate Value of squares of 51 and 111.
Solution---> We know that ,
( x + p ) ( x + q ) = x² + ( p + q )x + pq
Now,
( a + b )² = ( a + b ) ( a + b )
= a ( a + b ) + b ( a + b )
= a a + a b + b a + b b
( a + b )² = a² + 2 ab + b²
Now we find value of 51²,
51² = ( 50 + 1 )²
Applying ( a + b )² = a² + 2ab + b² , we get,
= ( 50 )² + ( 1 )² + 2 ( 50 ) ( 1 )
= 2500 + 1 + 100
= 2601
Now we calculate value of ( 101 )²
( 101 )² = ( 100 + 1 )²
Applying ( a + b )² = a² + b² + 2ab , we get,
= ( 100 )² + ( 1 )² + 2 ( 100 ) ( 1 )
= 10000 + 1 + 200
= 10201