Math, asked by mahamr284, 5 days ago

evaluate a cube - b cube when a-b =2 and a square + b square = 4​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {a}^{2} +  {b}^{2} = 4  -  -  - (1)\\

and

\rm \:  a - b = 2  -  -  - (2)\\

On squaring both sides, we get

\rm \:  {(a - b)}^{2} =  {2}^{2}  \\

\rm \:  {a}^{2} +  {b}^{2} - 2ab = 4 \\

\rm \:  4 - 2ab = 4 \:  \:  \:  \{using \: (1) \} \\

\rm \:  - 2ab = 0

\rm\implies \:ab = 0 \\

Now, Consider

\rm \:  {a}^{3} -  {b}^{3} \\

\rm \: =  \:(a - b)( {a}^{2} +  {b}^{2} + ab) \\

On substituting the values, we get

\rm \: =  \:(2)(4 + 0) \\

\rm \: =  \:2 \times 4 \\

\rm \: =  \:8 \\

Hence,

\rm\implies \:\boxed{\rm{  \: {a}^{3} -  {b}^{3} = 8 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions