Math, asked by baby43, 1 year ago

evaluate and write each of the following in terms of x and y.
if x= log 3 base 2
y= log 5 base 2.

i.) log 7.5 base 2
ii.) log 6750 base 2

Answers

Answered by KarupsK
48

Mark this answer as brainliest answer
Attachments:
Answered by mysticd
26

Answer:

i)log_{2}7.5=x+y-1

ii)log_{2}6750=1+3x+3y

Step-by-step explanation:

 Given \: x=log_{2}3 \:---(1)

and\: y =log_{2}5\:---(2)

Now, \\i)log_{2}7.5\\</p><p>=log_{2}\frac{75}{10}\\=log_{2}\frac{15}{2}\\=log_{2}15-log_{2}2

_____________________

By Logarithmic laws:

i)log_{a}\frac{m}{n}=log_{a}m-log_{a}n\\ii) log_{a}a=1\\iii) log_{a}mn= log_{a}m+log_{a}n

______________________

=log_{2}(3\times 5)-1\\=log_{2}3+log_{2}5-1\\=x+y-1

ii) log_{2}6750\\=log_{2}(2\times 3^{3}\times 5^{3}

=log_{2}2+log_{2}3^{3}+log_{2}5^{3}

=1+3log_{2}3+3log_{2}5

=1+3x+3y

Therefore,

i)log_{2}7.5=x+y-1

ii)log_{2}6750=1+3x+3y

•••♪

Similar questions