Math, asked by asrar2647, 5 hours ago

evaluate by using suitable algebraic identity
99×101​

Answers

Answered by IxIitzurshizukaIxI
3

Answer:

\huge\frak\red{Answer}

Given, 99×101=(100−1)(100+1).

We know, (a+b)(a−b)=a2−b2.

Then,

99×101=(100−1)(100+1)

=(100)2−12

=10000−1

=9999.

Answered by velpulaaneesh123
2

Answer:

999

Step-by-step explanation:

Given, 99×101=(100−1)(100+1).

We know, (a+b)(a−b)=a^2  −b ^2

Then,

99×101=(100−1)(100+1)

=(100) ^2  − 1 ^2

=10000 -1

=9999

Similar questions