Math, asked by ayushiojhao616, 2 months ago

Evaluate )cos 0°+cos 45°+son 30°)(sin 90°-cos 45°+cos 60°)​

Answers

Answered by ZaraAntisera
1

Answer:

\left(\cos \left(0\right)+\cos \left(45^{\circ \:}\right)+son30^{\circ \:}\right)\left(\sin \left(90^{\circ \:}\right)-\cos \left(45^{\circ \:}\right)+\cos \left(60^{\circ

\mathrm{\:}\right)\right)=\frac{\sqrt{2}\left(3\sqrt{2}180^{\circ \:}nso-360^{\circ \:}nso+6\right)}{24} + 1}

Step-by-step explanation:

\left(\cos \left(0\right)+\cos \left(45^{\circ \:}\right)+son30^{\circ \:}\right)\left(\sin \left(90^{\circ \:}\right)-\cos \left(45^{\circ \:}\right)+\cos \left(60^{\circ \:}\right)\right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(0\right)=1

=\left(\sin \left(90^{\circ \:}\right)+\cos \left(60^{\circ \:}\right)-\cos \left(45^{\circ \:}\right)\right)\left(30^{\circ \:}nso+1+\cos \left(45^{\circ \:}\right)\right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(45^{\circ \:}\right)=\frac{\sqrt{2}}{2}

=\left(\sin \left(90^{\circ \:}\right)+\cos \left(60^{\circ \:}\right)-\cos \left(45^{\circ \:}\right)\right)\left(30^{\circ \:}nso+1+\frac{\sqrt{2}}{2}\right)

=\left(\sin \left(90^{\circ \:}\right)+\cos \left(60^{\circ \:}\right)-\cos \left(45^{\circ \:}\right)\right)\left(\frac{180^{\circ \:}nso}{6}+1+\frac{\sqrt{2}}{2}\right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \sin \left(90^{\circ \:}\right)=1

=\left(1+\cos \left(60^{\circ \:}\right)-\cos \left(45^{\circ \:}\right)\right)\left(\frac{180^{\circ \:}nso}{6}+1+\frac{\sqrt{2}}{2}\right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(45^{\circ \:}\right)=\frac{\sqrt{2}}{2}

=\left(1+\cos \left(60^{\circ \:}\right)-\frac{\sqrt{2}}{2}\right)\left(\frac{180^{\circ \:}nso}{6}+1+\frac{\sqrt{2}}{2}\right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(60^{\circ \:}\right)=\frac{1}{2}

=\left(1+\frac{1}{2}-\frac{\sqrt{2}}{2}\right)\left(\frac{180^{\circ \:}nso}{6}+1+\frac{\sqrt{2}}{2}\right)

=\frac{\sqrt{2}\left(3\sqrt{2}180^{\circ \:}nso-360^{\circ \:}nso+6\right)}{24}+1

Similar questions