Math, asked by nehapanwar, 1 year ago

evaluate cos^2((π/4)+x)-sin ^2((π/4)-x)

Answers

Answered by GuntasDhillon
114
Here is the ans
Hope it helps you
Attachments:

GuntasDhillon: Mark it brainliest pls if you like it
Answered by lublana
34

Given:

cos^2(\frac{\pi}{4}+x)-sin^2(\frac{\pi}{4}-x)

To find :

The value of given expression

Solution:

cos^2(\frac{\pi}{4}+x)-sin^2(\frac{\pi}{4}-x)

cos(\frac{\pi}{4}+x+\frac{\pi}{4}-x)cos(\frac{\pi}{4}+x-\frac{\pi}{4}+x)

Using identity:

cos(A+B)cos(A-B)=cos^2A-sin^2 B

cos(\frac{2\pi}{4})cos(2x)

cos(\frac{\pi}{2})cos(2x)

0\times cos(2x)=0

Using value

cos(\frac{\pi}{2})=0

cos^2(\frac{\pi}{4}+x)-sin^2(\frac{\pi}{4}-x)=0

Similar questions