Evaluate: (〖cos〗^2 (45°+θ)+〖cos〗^2 (45°-θ))/(tan (60°+θ)tan (30°-θ) )+cosec (75°+θ)-sec(15°-θ).
Answers
Answered by
0
Answer:
Taking Left Hand Side,\begin{gathered}\dfrac{cos^2(45+\theta)+cos^2(45-\theta)}{tan(60+\theta).tan(30-\theta)}\\\\\\=\dfrac{cos^(45+\theta)+sin^2(90-45+\theta)}{tan(60+\theta).cot(90-30+\theta)}\\\\\\=\dfrac{cos^2(45+\theta)+sin^2(45+\theta)}{tan(60+\theta).cot(60+\theta)}\\\\\\=\dfrac{1}{1}\\\\\\=1\end{gathered}
tan(60+θ).tan(30−θ)
cos
2
(45+θ)+cos
2
(45−θ)
=
tan(60+θ).cot(90−30+θ)
cos
(
45+θ)+sin
2
(90−45+θ)
=
tan(60+θ).cot(60+θ)
cos
2
(45+θ)+sin
2
(45+θ)
=
1
1
=1
Right Hand Side = Left Hand Side.
Hence Proved.
Similar questions