Math, asked by rohitbagoriya1977, 1 year ago

Evaluate cos 48 cos 42- sin 48 sin 42


rohitbagoriya1977: toh fir kb doge
leena8635: never
rohitbagoriya1977: kyo
leena8635: meri marje
leena8635: hum YouTube pr bhi chat kr sakte hai
rohitbagoriya1977: really
rohitbagoriya1977: pr kese
leena8635: but I don't know
leena8635: ussme hum only contact vale person se he baat kr sakte
leena93: hii

Answers

Answered by Anonymous
14

 \cos48 \cos42 -  \sin48 \sin42

As we know that :

 \cos( \alpha  +  \beta )   = cos \alpha cos \beta  -  \sin \alpha   \sin \beta

here  \:  \alpha  = 48 \: and \:  \beta  = 42 \\  \\  =  >  \cos(48 + 42)  \\  \\  =  >  \cos90 = 0

So, the answer will be 0
Answered by isyllus
9

Answer:

\cos48^\circ\cos42^\circ-\sin48^\circ\sin42^\circ=0

Step-by-step explanation:

To evaluate: \cos48^\circ\cos42^\circ-\sin48^\circ\sin42^\circ

Formula: cos A cos B - sin A sin B = cos(A+B)

where, A = 48°, B = 42°

\Rightarrow \cos48^\circ\cos42^\circ-\sin48^\circ\sin42^\circ

\Rightarrow \cos(48^\circ+42^\circ)

\Rightarrow \cos(90^\circ)

\Rightarrow 0

Hence, the value of \cos48^\circ\cos42^\circ-\sin48^\circ\sin42^\circ=0

Similar questions