Math, asked by khanriffat95, 15 days ago

evaluate cos 48° - sin 42°​

Answers

Answered by manjitdas221
1

\huge{\underline{\mathtt{\red{A}\pink{n}\green{s}\blue{w}\purple{e}\orange{r}\green{♡}}}} \bold \red♡

0

Step-by-step explanation:

 \cos(48)  -  \sin(42)  \\  =  \cos(90 - 42)  -  \sin(42)  \\  =  \sin(42)  -  \sin(42)  = 0

Answered by IamIronMan0
0

Answer:

0

Step-by-step explanation:

We know that

 \sin( {90}^{ \circ}  -  \theta)  =  \cos( \theta)

So using this formula we get

 \sin( {42}^{ \circ} )  \\  =  \sin(  {90}^{ \circ}  - {48}^{ \circ} )  \\   =  \cos( {48}^{ \circ} )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

So your question is nothing but

\cos( {48}^{ \circ} ) - \sin( {42}^{ \circ} ) \\  = \cos( {48}^{ \circ} ) - \cos( {48}^{ \circ} ) \\  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions