Evaluate
cos 58º
sin 32º +
sin 22º
cos 68º –
cos 38º cosec 52º
3 (tan 18º tan 35º tan 60º tan 72º tan 55º)
Answers
Answered by
2
Answer:
6√3 - 1 / √3
Step-by-step explanation:
Assume question as
Evaluate
cos 58 / sin 32 + sin 32 / cos 68 - cos 38 cosec 52 / 3(tan 18 tan 35 tan 60 tan72 tan55)
So Cos (90 - 32)/sin 32 + sin (90 - 68) / cos 68 - cos(90 - 52) cosec 52
= sin 32 / sin 32 + cos 68 / cos 68 - sin 52 cosec 52 / 3 ( cot 72 tan 72 tan 55 cot 55 tan 60)
= 1 + 1 - 1 / 3 √3 ( tan 60 = √3)
= 2 - 1 / 3√3
= 6√3 - 1 / 3 √3
Answered by
2
Answer:
Answer is
Step-by-step explanation:
Given:
we have to find value of given expression.
As we complimentary angles of trigonometry,
Consider,
( ∵ tan 60° = √3 )
Therefore, Answer is
Similar questions