Math, asked by ak3649012, 5 hours ago

Evaluate Cos 60° + Sec 30°​

Answers

Answered by Anonymous
1

Trigonometry

To solve these types of questions, use the concept listed below:

  • Trigonometric ratios: They are sin, cos, tan, cot, sec, cosec.
  • The standard angles of these trigonometric ratios are 0°, 30°, 45°, 60° and 90°.

Analyse the values of important angles for all the six trigonometric ratios shown in the table given below:

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

[Check the attachment if any case you're not able to see the table]

Let's head to the Question now:

\implies \cos(60^\circ) + \sec(30^\circ) \\  \\  \implies \frac{1}{2}  +  \frac{2}{ \sqrt{3} }  \\  \\ \implies \frac{1}{2}  +  \frac{2 \sqrt{3} }{3} \\  \\ \implies \boxed{\frac{3 + 4 \sqrt{3} }{6} }

Hence, this is our required answer.

Attachments:
Similar questions