Physics, asked by prachirathod2007, 2 months ago

Evaluate cos(A-B) and cosA- cosB when A=60° and B=30°

Answers

Answered by vinayhrt
2

Answer:

cos A-B =√3/2 and cosA - cos B = 1-✓3/2

Answered by Anonymous
1

Explanation:

cos(A-B)

cos(A-B) = cosA.cosB + sinA.sinB

A=60° \:  and \:  \:  B=30°

 = cos60°.cos30° + sin60°.sin30°

 =  \frac{1}{2} . \frac{ \sqrt{3} }{2} +   \frac{ \sqrt{3} }{2} . \frac{1}{2}

 =  \frac{ \sqrt{3} }{4}  +  \frac{ \sqrt{3} }{4}

 =  \frac{ \sqrt{3}  +  \sqrt{3} }{4}

 =   \frac{ \cancel2 \sqrt{3} }{ \cancel4}

 =   \frac{ \sqrt{3} }{2}

cosA- cosB

cosA- cosB =  - 2sin \frac{A + B}{2} .sin \frac{A- B}{2}

A=60°  \:  \: and  \:  \:  \: B=30°

 =  - 2sin \frac{60°+30°}{2} .sin \frac{60° - 30°}{2}

 =  - 2sin \frac{90°}{2} .sin \frac{ 30°}{2}

 =  - 2sin45° .sin15°

 =  - 2. \frac{1}{2}  .sin(45° - 30°)

 =  - 1 (sin45°.cos30° + Cos45°.sin30°)

 = - 1( \frac{1}{2} . \frac{ \sqrt{3} }{2}  -  \frac{ \sqrt{1} }{2} . \frac{ \sqrt{3} }{2} )

 =  - 1( \frac{ \sqrt{3} }{4}  -  \frac{ \sqrt{3} }{4} )

 =  - 1(0)

 = 0

Similar questions