evaluate Cos A. Cos (90-A)-Sin A .Sin (90-A)
Answers
Answer:
The given expression is
\cos A \cos (90^{\circ}-A)-\sin A \sin(90^{\circ}-A)cosAcos(90
∘
−A)−sinAsin(90
∘
−A)
We need to find the value of given expression.
We know that
\cos (90^{\circ}-\theta)=\sin \thetacos(90
∘
−θ)=sinθ
\sin (90^{\circ}-\theta)=\cos \thetasin(90
∘
−θ)=cosθ
Using these formulas the given expression can be written as
\cos A \sin A-\sin A \cos AcosAsinA−sinAcosA
00
Therefore, the value of given expression is 0.
#Learn more
Evaluate:
sina cosa - (sina cos(90-a)cosa/sec(90 -a)) - (cosa sin(90-a)sina/cosec(90-a)
Answer:
The value of given expression is 0.
Step-by-step explanation:
The given expression is
\cos A \cos (90^{\circ}-A)-\sin A \sin(90^{\circ}-A)cosAcos(90
∘
−A)−sinAsin(90
∘
−A)
We need to find the value of given expression.
We know that
\cos (90^{\circ}-\theta)=\sin \thetacos(90
∘
−θ)=sinθ
\sin (90^{\circ}-\theta)=\cos \thetasin(90
∘
−θ)=cosθ
Using these formulas the given expression can be written as
\cos A \sin A-\sin A \cos AcosAsinA−sinAcosA
00
Therefore, the value of given expression is 0.
#Learn more
Evaluate:
sina cosa - (sina cos(90-a)cosa/sec(90 -a)) - (cosa sin(90-a)sina/cosec(90-a))