Math, asked by lakshmi9150, 1 year ago

evaluate cos square 52 1/2 °-sin square 22 1/2°

Answers

Answered by hardikrathore
43
here is your solution
sin square 22.5 can also be find by this method as a=22.5 and 2a=45
Attachments:
Answered by pinquancaro
110

Answer:

\cos^2 (52.5)-\sin^2 (22.5)=\frac{3-\sqrt3}{4\sqrt2}

Step-by-step explanation:

Given : Expression \cos^2 (52 \frac{1}{2}^\circ)-\sin^2 (22 \frac{1}{2}^\circ)

To find : Evaluate the expression?

Solution :

We know, \cos^2 A-\sin^2 B=\cos(A+B)\cos(A-B)

\cos^2 (52.5)-\sin^2 (22.5)=\cos(52.5+22.5)\cos(52.5-22.5)

\cos^2 (52.5)-\sin^2 (22.5)=\cos(75)\cos(30)

\cos^2 (52.5)-\sin^2 (22.5)=\frac{\sqrt3}{2}(\cos(45+30))

Applying identity, \cos(A+B)=\cos A\cos B-\sin A\sin B

\cos^2 (52.5)-\sin^2 (22.5)=\frac{\sqrt3}{2}(\cos 45\cos 30-\sin 45\sin 30)

Substitute the values of the function,

\cos^2 (52.5)-\sin^2 (22.5)=\frac{\sqrt3}{2}((\frac{1}{\sqrt2})(\frac{\sqrt3}{2})-(\frac{1}{\sqrt2})(\frac{1}{2}))

\cos^2 (52.5)-\sin^2 (22.5)=\frac{\sqrt3}{2}(\frac{\sqrt3}{2\sqrt2})-\frac{1}{2\sqrt2})

\cos^2 (52.5)-\sin^2 (22.5)=\frac{\sqrt3}{2}(\frac{\sqrt3-1}{2\sqrt2})

\cos^2 (52.5)-\sin^2 (22.5)=\frac{3-\sqrt3}{4\sqrt2}

Therefore, \cos^2 (52.5)-\sin^2 (22.5)=\frac{3-\sqrt3}{4\sqrt2}

Similar questions