Math, asked by sanketmhaske8189, 7 months ago

evaluate [cos theta-sin theta] if [a] theta=7pi/4 [b]theta=11pi/3

Answers

Answered by 216320mpc
5

Answer:

Step-by-step explanation:

cos11π/3-sin 11π/3    = cos( 4π -π/3)-sin(4π-π/3)=cosπ/3+sinπ/3= cos60+sin60 =1/2+√3/2=1+√3/2

Answered by VaibhavSR
2

Answer:

A) \sqrt{2}  B) \frac{1+\sqrt{3} }{2}

Step-by-step explanation:

Given

cosФ -  sin Ф

A) Ф= 7π/4

B) Ф= 11π / 4

First we have to find  Ф= 7π/4

cos 7π/4 - sin 7π/4

cos( 2π - π/4 ) - sin ( 2π - π/4 )

cos ( 2π - Ф) = cosФ

sin ( 2π - Ф) = -sin Ф

cos π/4 + sin π/4

= 1/ \sqrt{2} + 1/ \sqrt{2\\}

= \sqrt{2\\}

Now we have to find  Ф= 11π / 4

cosФ -  sin Ф

cos  11π / 4 - sin 11π / 4

cos (4π - π/3 )- sin (4π - π/3 )

cos π/3 + sin π/3

= 1/2 + \sqrt{3} / 2

= \frac{1+\sqrt{3} }{2}

https://brainly.in/question/40732

https://brainly.in/question/886490

#SPJ2

Similar questions