evaluate ∫ cos x / root[sin^2x - 2sinx - 3 ]dx
Answers
Answered by
2
Given,
∫ cos x / √[sin^2x - 2sinx - 3 ]dx
Let t = sinx then, cos x dx = dt
= dt / √(t² - 2t - 3)
= dt / √(t² - 2t + 1 -1 -3)
= dt / √((t-1)² - (2)²)
= log | (t-1) + √(t-1)^2 - (2)^2 | + C
= log | (sin x - 1) + √sin²x-2sinx-3 | + C
Similar questions